Molecular 'velcro': Covalent bonds between 2D materials unlock enhanced optoelectronic capabilities
Researchers have chemically linked 2D materials using a molecular "velcro," resulting in a device with improved optoelectronic properties. The device, made of palladium nanosheets covalently bonded with MoS2, shows an enhanced optoelectronic response in the infrared thanks to the chemically bonded interface between the two materials, in comparison to its van der Waals counterpart. This next generation of 2D-2D heterostructures goes beyond van der Waals thanks to the strong covalent bonds between its 2D materials.
phys.org > NanomaterialsDNA nanorobots that can alter artificial cells offer a new tool for synthetic biology
The shape and morphology of a cell play a key role in the biological function. This corresponds to the principle of "form follows function," which is common in modern fields of design and architecture. The transfer of this principle to artificial cells is a challenge in synthetic biology. Advances in DNA nanotechnology now offer promising solutions. They allow the creation of novel transport channels that are large enough to facilitate the passage of therapeutic proteins across cell membranes.
phys.org > NanomaterialsVersatile nanothermometer enables real-time material structure and temperature observation
Technological advancements in the simultaneous observation of ultrafine structures and temperature changes in materials are paving the way for the development of advanced materials. This innovation is expected to facilitate the analysis of the correlation between specific structures and the thermodynamic properties of samples.
phys.org > NanomaterialsScientists engineer nanostructured surfaces hostile to bacteria but friendly to cells
Researchers from Tokyo Metropolitan University have created nanostructured alumina surfaces which are strongly antibacterial but can be used to culture cells. They found that anodic porous alumina (APA) surfaces prepared using electrochemistry in concentrated sulfuric acid had unprecedented resistance to bacterial growth, but did not hamper cell cultures.
phys.org > NanomaterialsFully recyclable carbon nanotube fibers have far-reaching implications for manufacturing across sectors
In a significant step toward creating a sustainable and circular economy, Rice University researchers have published a study in the journal Carbon demonstrating that carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. This discovery positions CNT fibers as a sustainable alternative to traditional materials like metals, polymers and the much larger carbon fibers, which are notoriously difficult to recycle.
phys.org > NanomaterialsCovalent organic frameworks demonstrate considerable potential for efficient energy transport
An interdisciplinary research team from LMU, the Technical University of Munich (TUM), and the University of Oxford has employed novel spectroscopic techniques to investigate the diffusion of excited states in covalent organic frameworks (COFs).
phys.org > NanomaterialsSingle-atom metal layer reveals unexpected spin-polarized current control with light
Researchers at the University of Tokyo have demonstrated that the direction of the spin-polarized current can be restricted to only one direction in a single-atom layer of a thallium-lead alloy when irradiated at room temperature. The discovery defies conventions: single-atom layers have been thought to be almost completely transparent, in other words, negligibly absorbing or interacting with light.
phys.org > NanomaterialsHighly tunable biotemplating method expands nanostructure synthesis options
A joint research team has developed a biotemplating method that utilizes specific internal proteins in biological samples and has high tunability. The study is published in Advanced Science.
phys.org > NanomaterialsScientists develop high-impact materials for optoelectronic technologies
Every day, people are reaping the benefits of work by scientists and engineers to make more effective X-ray machines, computers, cell phones and televisions. Florida State University researchers are pushing the boundaries of those technologies and developing new more cost-effective and environmentally friendly materials for these devices.
phys.org > NanomaterialsHidden transport pathways in graphene confirmed, paving the way for next-generation device design
Electron transport in bilayer graphene exhibits a pronounced dependence on edge states and a nonlocal transport mechanism, according to a study led by Professor Gil-Ho Lee and Ph.D. candidate Hyeon-Woo Jeong of POSTECH's Department of Physics, in collaboration with Dr. Kenji Watanabe and Dr. Takashi Taniguchi at Japan's National Institute for Materials Science (NIMS).
phys.org > NanomaterialsJanus graphene nanoribbons poised to advance quantum technologies
Researchers from the National University of Singapore (NUS) have recently achieved a significant breakthrough in the development of next-generation carbon-based quantum materials, opening new horizons for advancements in quantum electronics.
phys.org > NanomaterialsDomain wall fluctuations in 2D materials reveal a new mechanism of superconductivity
Two-dimensional (2D) van der Waals are made of atomically thin layers, held together by weak van der Waals forces. These materials have been the focus of numerous studies, as their unique properties make them ideal for studying various exotic and rare physical phenomena.
phys.org > NanomaterialsGraphene technique improves ultrathin film manufacturing for flexible electronics
As the demand for thinner, lighter, and more flexible electronic devices grows, the need for advanced manufacturing processes has become critical. Polyimide (PI) films are widely used in these applications due to their excellent thermal stability and mechanical flexibility. They are crucial for emerging technologies like rollable displays, wearable sensors, and implantable photonic devices.
phys.org > NanomaterialsResearchers image magnetic skyrmions at room temperature for the first time
An international research team, working with cutting-edge technology at the University of Nebraska–Lincoln, has made a discovery that may dramatically expand the materials used in next-generation, energy-efficient memory and logic devices.
phys.org > NanomaterialsDecoding 2D material growth: White graphene insights open doors to cleaner energy and more efficient electronics
A breakthrough in decoding the growth process of hexagonal boron nitride (hBN), a 2D material, and its nanostructures on metal substrates could pave the way for more efficient electronics, cleaner energy solutions and greener chemical manufacturing, according to new research from the University of Surrey published in the journal Small.
phys.org > NanomaterialsMicro, modular, mobile—DNA-linked microrobots offer new possibilities in medicine and manufacturing
When robots are made out of modular units, their size, shape, and functionality can be modified to perform any number of tasks. At the microscale, modular robots could enable applications like targeted drug delivery and autonomous micromanufacturing; but building hundreds of identical robots the size of a red blood cell has its challenges.
phys.org > NanomaterialsSustainable nanofiber coating can extend fruit shelf life
As fruits and vegetables are perishable, it can be challenging to keep them fresh and safe to eat. In the time it takes to transport them from farm to table, these difficulties with post-harvest storage mean that enormous amounts of fresh produce are currently being wasted. While this waste can be reduced with the help of cold storage and robust packaging, these solutions are often highly unsustainable. They involve non-biodegradable plastics, or harmful chemicals which can leach into food and soil damaging the environment and even our own health.
phys.org > NanomaterialsCombining graphene and nanodiamonds for better microplasma devices
Microplasma devices are incredibly versatile tools for generating and sustaining plasmas on micro- and millimeter scales. The latest advances in nanotechnology now promise to expand their range of applications even further but, so far, this progress has been held back by the limited stability of some nanostructures at the extreme temperatures required to sustain many plasmas.
phys.org > NanomaterialsFrom superfood to super material: Goji berries yield antibacterial silver nanoparticles
As the search for sustainability permeates all fields, researchers are turning to a unique organic source for creating antibacterial silver nanoparticles (Ag-NPs)—the humble goji berry.
phys.org > NanomaterialsUltrathin conductor surpasses copper for more energy-efficient nanoelectronics
As computer chips continue to get smaller and more complex, the ultrathin metallic wires that carry electrical signals within these chips have become a weak link. Standard metal wires get worse at conducting electricity as they get thinner, ultimately limiting the size, efficiency, and performance of nanoscale electronics.
phys.org > NanomaterialsLaser technique uncovers how titanium's electron behavior influences its physical properties
A research team at Yokohama National University has developed a way to study how the orientation and behavior of electrons in titanium influence its physical characteristics. Their findings, published in Communications Physics on December 18, 2024, could pave the way for the development of more advanced and efficient titanium alloys.
phys.org > NanomaterialsInnovative doping technique boosts semiconductor nanocrystal performance
A research team has successfully developed a new technology to control doping at the nucleus (seed) phase to increase the performance of semiconductor nanocrystals. The study uncovered how the doping process and location differ depending on the type of doping element (dopant). The developed technology is expected to be widely utilized in advanced electronic devices, such as displays and transistors.
phys.org > NanomaterialsDiscovery of bistable nanocrystals promises faster, more energy-efficient optical computing
Scientists, including an Oregon State University chemistry researcher, have taken a key step toward faster, more energy-efficient artificial intelligence, and data processing in general, with the discovery of luminescent nanocrystals that can be quickly toggled from light to dark and back again.
phys.org > NanomaterialsDiversifying DNA origami: Generative design tool relies on grammar rules for finding best shape
Just as the name suggests, DNA origami is a fabrication technique wherein researchers fold DNA strands to create precisely shaped 2- and 3-dimensional nanostructures. These highly programmable structures have the potential to transform drug delivery, diagnostic medicine, nanomaterials formation and molecular computing, but much like crafting paper origami, scientists are limited to the designs they can conceptualize.
phys.org > NanomaterialsNew 'all-optical' nanoscale sensors of force access previously unreachable environments
Mechanical force is an essential feature for many physical and biological processes. Remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for a wide range of applications, from robotics to cellular biophysics and medicine and even to space travel. Nanoscale luminescent force sensors excel at measuring piconewton forces, while larger sensors have proven powerful in probing micronewton forces.
phys.org > NanomaterialsEngineers develop first deep-UV microLED display chips for maskless photolithography
In a breakthrough set to revolutionize the semiconductor industry, the School of Engineering of the Hong Kong University of Science and Technology (HKUST) has developed the world's first-of-its-kind deep-ultraviolet (UVC) microLED display array for lithography machines. This enhanced efficiency UVC microLED has showcased the viability of a lowered cost maskless photolithography through the provision of adequate light output power density, enabling exposure of photoresist films in a shorter time.
phys.org > Nanomaterials2D materials with 'twist' show unexpected electronic behavior that defy theoretical predictions
In the search for new materials that can enable more efficient electronics, scientists are exploring so-called 2D materials. These are sheets of just one atom thick, that may have all kinds of interesting electronic properties. If two sheets are placed on top of each other at specific angles, this may lead to new properties such as superconductivity. University of Groningen materials scientist Antonija Grubišić-Čabo and her colleagues studied such a "twisted" material and discovered that it defied theoretical predictions.
phys.org > NanomaterialsLight-driven method creates molecular fit that would otherwise be impossible
Exploiting an ingenious combination of photochemical (i.e., light-induced) reactions and self-assembly processes, a team led by Prof. Alberto Credi of the University of Bologna has succeeded in inserting a filiform molecule into the cavity of a ring-shaped molecule, according to a high-energy geometry that is not possible at thermodynamic equilibrium. In other words, light makes it possible to create a molecular "fit" that would otherwise be inaccessible.
phys.org > Nanomaterials